
National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Contract LAC16713

September 2002

NASA/CR-2002-000000

Iterative Matrix Equation Solver for a
Reconfigurable FPGA-Based
Hypercomputer

William S. Fithian
Star Bridge Systems
Langley Research Center, Hampton, Virginia

Samuel Brown
Star Bridge Systems, Midvale, Utah

Olaf O. Storaasli and Robert C. Singleterry
Langley Research Center, Hampton, Virginia

IN PREPARATION

 0

Iterative Matrix Equation Solver for a Reconfigurable FPGA-Based Hypercomputer®

William S. Fithian, Star Bridge Systems, Midvale UT (at NASA Langley Research Center, Hampton, VA)
Samuel S. Brown, Star Bridge Systems, Midvale, UT
Olaf O. Storaasli, Ph.D., NASA Langley Research Center, Hampton, VA
Robert C. Singleterry, Ph.D., NASA Langley Research Center, Hampton, VA

Abstract:

This paper details efforts to program a basic, Jacobi iterative matrix equation solver on a
reconfigurable field-programmable-gate-array- (FPGA) based computer manufactured by Star Bridge
Systems, Inc. An FPGA is an array of Silicon gates on a computer chip that can be reconfigured by
programmers in the field for specific problems. In addition to the dynamic nature of FPGA hardware
(which enables optimization to specific applications), FPGAs are also inherently parallel. This enables
programmers to make as many operations run concurrently as they can physically fit on the FPGA, using
its resources more efficiently than is possible on a CPU. Jacobi iteration, a relatively simple matrix
equation solution algorithm, is well suited for implementation on an FPGA computer because of its
inherent parallel nature and repetitive use of the same arithmetic operations. A Jacobi iterative matrix
solver was created and tested successfully on a 3x3 matrix. The basic components were developed for a
more parallel implementation of the solver, planned to be a useful tool for future engineering
applications.

1. Introduction:
Solving systems of simultaneous linear equations is a
common task for engineers to perform when modeling
natural phenomena. Frequently, applications
containing thousands or even millions of equations and
variables require computer solutions because they are
too complicated to be solved by hand. Current state-of-
the-art matrix equation solvers for supercomputers
utilize parallel processing (performing numerous steps
in an algorithm simultaneously) to increase solution
speed. To achieve this parallelism, they exploit
multiple CPUs capable of communicating with each
other. However, this type of parallelism is inefficient,
using only a small fraction of CPU resources at any
given time, while the rest of the silicon lies idle and
wastes power. CPUs are designed to be general and
capable of performing any function they will ever need
to perform. Therefore, they contain many resources
that are rarely used. In addition, the interprocessor
communication time required by traditional matrix
equation solvers seriously limits the number of
processors that may operate efficiently in parallel
(Reference [2]).

Field-programmable gate arrays (FPGAs), are a
relatively new type of computer chip with various
properties that set them apart from more traditional
CPUs. They are basically large arrays of binary logical
gates that can be programmed and connected to each
other in any configuration. These gates can be
configured and reconfigured an arbitrary number of
times, allowing the creation of customized processors
specifically programmed for an application.

Programmed FPGAs save chip space because they are
specific rather than general. FPGAs and also allow a
great deal of inherent parallelism (Reference [3]). The
number of processors that can exist and operate
concurrently on one FPGA chip is limited only by the
number of computational logic blocks (CLBs), or
groups of gates, that exist on that FPGA to be
programmed. This allows FPGAs to be significantly
more efficient than CPUs in their use of processor
space. However, the efficiency derived from
optimizing hardware to a task is only useful if users
have access to the hardware. Star Bridge’s Viva®
software performs all the gate optimization and
simplifies programming algorithms on FPGAs
(Reference [3]).

1.1 Viva®:
Viva® erases the traditional line between hardware and
software, merging both into what is called Gateware®.
Viva® is actually software that runs on a traditional
CPU, allowing users to program algorithms using a
click-and-drag graphical user interface. The user
creates a graphical program called a “sheet” with his
mouse, then directs Viva® to “synthesize” the sheet.
This synthesis is more than compiling the program into
executable machine code; Viva® creates routing
instructions for reconfiguring the FPGA hardware into
an optimized, inherently parallel, application-specific
chip ready to run the Viva® program. Viva® is a high-
level graphical language that gives chip designing
capabilities to users who lack the previously required

 1

time or expertise to create their own application-
specific integrated circuits (ASICs) (Reference [3]).
 Viva®’s graphical user interface provides inherent
parallelism and gives programs the look of flow charts.
By clicking, dragging, and dropping library objects
located in the right sidebar of the graphical user
interface, the user can create input horns, output horns,
functions with their own inputs and outputs, and pipes
that carry data to and from all of these objects.
Functions are represented as rectangular boxes with
plug-in points located on the left and right for inputs
and outputs, respectively. When sheets begin to get
complicated, users can collapse any group of inputs,
outputs, and functions into one of these small function
boxes, enabling both easy creation of specialized
libraries and easy management of screen clutter. Figure
1 is a screen shot of the Viva® 2.0 interface, which
calculates the dot product
(x1*y1)+(x2*y2)+(x3*y3)+(x4*y4). The “Go” input
begins this vector computation.

1.2 Inherent Parallelism:
The four multiplications in Figure 1 are automatically
concurrent, as are the first two additions, due to
Viva®’s inherent parallelism. If the FPGA performed
all the operations one by one, program execution would
require about 103 clock cycles; by contrast, the parallel
Viva® solution requires only about 27.

Dot products and any other operations that exhibit a
high degree of natural parallelism can reap great
benefits from this parallel nature of FPGAs and Viva®.
Parallelism on FPGAs is limited only by two factors.
The first is the number of operators that can fit on the
available silicon. The other is the amount of
parallelism in the process being programmed. In nearly
all algorithms, some processes cannot operate
simultaneously, due to one process’s dependence on
another process’s results. These processes require
separate sequential steps no matter how much silicon is
available. Necessary sequentialism, however, is more
prevalent in some algorithms than others.

Therefore, the best candidates for programming on
FPGAs are those with minimal necessary
sequentialism. For very parallel algorithms, most of the
silicon may operate in parallel nearly all the time.
Jacobi iteration, a solution method for systems of
matrix equations, is one such algorithm.

1.3 Jacobi Iteration:
Jacobi Iteration (Reference [1]) is a mathematically
simple iterative method to solve systems of
simultaneous linear equations. Let us begin with the
matrix equation

[A]{x} = {b} (1)

that represents the system of linear equations

A11x1 + A12x2 + A13x3 + … + A1nxn = b1
A21x1 + A22x2 + A23x3 + … + A2nxn = b2
A31x1 + A32x2 + A33x3 + … + A3nxn = b3
…
An1x1 + An2x2 + An3x3 + … + Annxn = bn (2)

where the A’s with subscripts are matrix coefficients,
b’s are the right-hand-side values, x’s are the solution
values, and n is the number of equations in the problem.
First, each equation is solved for a different variable:

x1 = (b1 - A12x2 - A13x3 - … - A1nxn) /A11

x2 = (b2 - A21x1 - A23x3 - … - A2nxn) /A22

x3 = (b3 - A31x1 - A32x2 - … - A3nxn) /A33

… (3)
xn = (bn - An1x1 - An2x2 - … - An(n-1)xn-1) /Ann

Next, an initial guess is chosen for the solution vector,
for example {x}(0) = {0}. A second guess, {x}(1), is
generated by substituting the values of {x}(0) into the
right side of equations (3) and evaluating x1

(1) through
xn

(1). The new solution vector {x}(1) solved for in this
manner is then substituted again into the right side of
equations (3) to generate a third guess, {x}(2). In
general:

x1
(k+1) = (b1 - A12x2

(k) - A13x3
(k) - … - A1nxn

(k)) /A11

x2
(k+1) = (b2 - A21x1

(k) - A23x3
(k) - … - A2nxn

(k)) /A22

x3
(k+1) = (b3 - A31x1

(k) - A32x2
(k) - … - A3nxn

(k)) /A33

…
xn

(k+1) = (bn - An1x1
(k) - An2x2

(k) - … - An(n-1)xn-1
(k)) /Ann

 (4)

Under the right conditions, applying (4) repetitively
yields a sequence of solutions that converges to the
correct solution vector (Reference [1]).
 This algorithm is very well suited to the unique
advantages offered by FPGAs as it exhibits a great deal
of inherent parallelism. Each iteration requires n2-n
multiplications that could ideally all be executed
simultaneously. Practically, there are limits to how
many operations can physically fit on an FPGA chip,
which prevent such a staggering degree of parallelism
from being realized. However, multiplications can take

 2

full advantage of all the parallelism the FPGAs have to
offer. There are also n2-n subtractions per iteration (not
quite as inherently parallel as the multiplications) that
like the multiplications are sufficiently parallel to fully
exploit all the FPGA has to offer.
 The Jacobi algorithm was also selected for its
mathematical simplicity. Jacobi iteration has only one
mathematical stage, which it repeats forever,
distinguishing it from more complex direct matrix
solvers, which typically have several stages, each
requiring different mathematical operations (Reference
[2]). The iterative method can also be programmed in a
manner that minimizes the communication between
different operations. In fact, we can treat the set of
operations to evaluate the right side of each equation as
a separate entity that only requires communication with
the solution vector on two occasions. The equation
sends a signal that says “I computed xi and this is its
value,” and receives a signal that says “Begin the next
iteration with the values {x}(k).” This implementation
of the Jacobi solver also fully exploits a matrix’s
sparseness by only storing and operating on the nonzero
elements of the matrix, as will be explained in the next
section. All these reasons, taken together, make Jacobi
iteration an excellent candidate for programming on an
FPGA.

2. Solver Implementation:
The goal of this work was to create an iterative matrix
equation solver to exploit the inherent parallelism of the
FPGA hardware to as high a degree as possible. This
section describes the programs that were written toward
that end.

2.1 Vector Representation in RAM:
The matrix [A] is not stored all together as one entity,
but rather as n independent vectors, each vector storing
data for one row and referenced only by the process that
created it. All of the computations this solver performs
are vector operations on rows of the matrix and
approximations to the solution vector. Though it might
appear convenient to pass vectors around between
functions the same way bits and numbers are passed,
such an approach is not feasible for vectors that contain
thousands or millions of numbers. Instead, a vector
representation scheme that treats vectors as memory
objects rather than data flowing through a pipe is
necessary. For this reason, vectors in this Jacobi
iterative solver are stored in RAM, and treated as
objects into and out of which data must be passed one
number at a time. It takes one FPGA clock cycle to
store or retrieve data in RAM.
 There are two types of vectors used in this project,
“dense” and “sparse.” The first type, dense, is a

representation designed for vectors whose terms are all
or nearly all nonzero. Approximations to the solution
vector (hereafter referred to simply as solution vectors)
are represented as dense vectors. A dense vector is
stored as an array of numbers indexed by their address
in the RAM

By contrast, rows of a matrix may contain only a
small percentage of nonzero elements and therefore are
represented and stored as sparse vectors. A sparse
vector is an ordered array containing each nonzero
element that occurs in the vector, paired with that
element’s location in the array. By storing sparse
vectors in this way, the solver can ignore any zero
element of a matrix, allowing full exploitation of the
matrix’s sparseness.

The number of nonzero elements (called the “size”
of the vector) is also stored in a register associated with
one sparse or dense vector’s RAM.
 Figure 2 shows a dense vector and a sparse vector,
programmed in graphical Viva® code. The parameters
passed into the dense RAM object are “Data,” “i”
(index), “Go” (initiates a read or a write), “Read” and
“Write” (true/false bits which tell the RAM how to
interpret a “Go” signal), “Size” (the input to the size-
storing register), and “Resize” (updates the size-storing
register). The parameters passed out are “Data,”
“Size,” and “Done” (indicates a read or a write is
complete). “ClkG” is the global clock.

The sparse RAM object has mostly nearly identical
inputs and outputs, except that the location of data in
the mathematical vector is not necessarily the same as
its location in the memory. “i” still represents the
mathematical location of data, but now “Addr”
represents the memory location where data is stored.
 In addition, vectors’ input and output parameters,
for the sake of easier programming and less cluttered
sheets, are “packed” into one pipe and passed together.
This feature does not actually alter the functionality of
any program or function and is not necessary – it is
merely a mechanism for packaging seven or eight
distinct pieces of information into one graphical pipe
rather than in seven or eight pipes.
 Because the RAM vector representation is not like
other data in Viva®, which can be passed intact through
pipes, into and out of boxes, functions that operate on
vectors must be implemented differently than those that
operate on more conventional data. In many cases,
vector functions require for loops and other control
structures to cycle through the vector. In addition,
these functions may not only require input from the
vectors on which they operate, but also provide output
parameters back to those vectors, in order to tell the
vectors which data to send and when. It is easiest to
place the vector object inside a function that uses it, but
often it is necessary to keep vectors outside of

 3

functions, especially if more than one function uses
them.
 Typically more than one function operates on a
vector during the execution of a program (e.g. one
function loads the vector, and another dots it with
another vector). Both functions must be able to send
the vector a set of input parameters, but the vector must
only respond to the correct set of parameters for the
specific stage of execution that is underway. The best
way to achieve this goal is to pass both sets of
parameters into a Viva® Multiplexer object
(abbreviated “Mux” in Viva®). The Mux also requires
a “state input” that signals to the Mux which stage of
execution is currently underway, and therefore which
set of parameters applies and should be passed on to the
vector. This state input can be a bit, double bit, triple
bit, or any other data type, depending on how many
different stages it must distinguish among.

Combining a Mux and a vector into one object was
used to form five-input and six-input vectors, with two
and three different sets of parameters to choose from,
respectively. This maintains the same functionality but
saves space on complex sheets. Figure 3 contains one
such five-input vector. The “Loader_S” object sends
one set of parameters to the sparse vector, to the input
point on Sparse labeled “S_I_0” (sparse input zero).
The “Reader_S” object sends another set to the “S_I_1”
(sparse input one) input point. “Load/Read,” the input
which leads into the “S” input point, contains the state
bit, selecting which set of parameters to use. When
“Load/Read” is 0, the vector uses the “S_I_0” or
loading parameters, and when “Load/Read” is 1, the
vector uses the “S_I_1” or reading parameters.

2.2 Dot Product Operation:
The only mathematical operation required during the
iterative stage of execution is a modified dot product
between a sparse matrix row and a dense solution
vector. Equations (3) look very much like dot
products, but are not exactly dot products. Consider the
similarities and differences between

xi

(k+1) = (bi - Ai1x1
(k) - Ai2x2

(k) - … (5)
- Ai(i-1)x(i-1)

(k) - Ai(i+1)x(i+1)
(k) - … - Ainxn

(k)) /Aii

and the simpler dot product,

xi

(k+1) = <Ai, xi
(k)> (6)

where Ai is the ith row of A.
The first difference is that all the elements of the row in
(5) must be negated and then divided by the diagonal
element of the row, Aii. Second, the diagonal element
term Aiixi

(k) is included in the dot product (6) but not

in (5). Third, the right hand side bi, divided by Aii,
must be added into the result in (5). The dot product
operation implemented in the iterative solver must be
modified to account for these differences in procedure.
Though the operation in (5) is not exactly a dot
product, it will hereafter sometimes be referred to as a
dot product or modified dot product as there is no other
term that could describe it.
 To divide all the elements of Ai by Aii and negate
them during each iteration is quite wasteful. To divide
and negate at the very beginning, before the first
iteration, saves time and resources. The data generated
by this process will be much more efficient to use than
the raw matrix data.
 To complete the data stored for the equation, bi/Aii
is stored in place of the diagonal element, indexed as
the diagonal element would be. The “dot product”
function is programmed to recognize when the index of
the sparse vector has reached i. When it has, the
function skips the multiplication step and simply adds
the data from the sparse vector into the accumulated dot
product.

2.3 Intuitive Description of Iterative Solver:
The matrix equation solver consists of one
communication and control “hub” and numerous dot
product “factories” that perform mathematical
computations and communicate only with the hub.

The first of the hub’s two functions is
communication. The hub stores the current
approximation to the solution vector, receives updates
on this approximation from each dot product factory
during iterations, and broadcasts copies of itself to
every factory between iterations. The second function
is synchronization. The hub keeps track of which
equations have reported solution vector updates during
the current iteration. When all equations have reported,
and the “Dot Product” stage of execution is complete
for one iteration, the hub sends the factories a signal to
proceed to the “Copy” stage of execution. When
copying is finished, the hub sends another signal to the
factories, initiating another “Dot Product” stage.

The factories perform the actual mathematical
operations that solve the system of equations. Each
factory contains sparse row data vectors, copies of the
dense solution vector, adds, and multiplies. During the
“Dot Product” stage, the factory computes the modified
dot products on all of this data with a user-defined
degree of parallelism, and reports the results back to the
hub until it is finished with all its rows. Each factory
then waits for the other factories to finish their own
computations. During the “Copy” stage, each factory
receives the new solution vector, one value at a time.
Signals from the hub tell each factory when to begin
and end each stage.

 4

2.4 Parallelization of Solver:
To use FPGA computers to their full potential, the
programmer must endeavor to take the best possible
advantage of the inherently parallel nature of the
FPGA. In the case of this iterative solver, both the
algorithm and the FPGA have a great deal of potential
parallelism, and exploiting this parallelism to the
maximum is essential to achieving high solution speed.
 Since the number of CLBs on the FPGA (and
therefore the number of specialized processors that can
be created) limit parallelism, the best results are
achieved when most of the processors can operate
simultaneously. For large problems, complete
parallelization is impossible, but a good combination of
sequentialism and parallelism can use most of the
FPGA’s resources most of the time. Minimizing chip
space and operation time governs many decisions
regarding how to structure Viva® programs.

Often, it is advantageous to let several different
processes share the same adder or multiplier.
Unfortunately, such optimization can complicate
matters, requiring complex timing and routing
structures to tell the adder or multiplier where to obtain
inputs and where to send outputs at any given time.
These control structures are explained in more detail in
section 2.5.

The first level of parallelism applied to the matrix
equation solver program was obtained by separating
different rows’ operations from one another.
Computations for row 4 have nothing to do with
computations for row 1, so the two sets of computations
are inherently parallel. If we had enough FPGA space,
we could simply create a factory for each row, but
given current technology it is only feasible to have a
limited number of factories, and assign each factory to
perform the computations for numerous rows, one row
at a time. This was the only level of parallelism
programmed into Figure 4, the 3x3 solver that was
tested successfully. Each factory includes one
multiplier and one adder to utilize for dot product
computation. Further analysis, however, shows that
dramatically increased parallelism is possible by adding
a second level of parallelism.

Some Viva® objects are much larger than others;
On the Xilinx 4062, the FPGA used for this solver, 32-
bit-floating-point adders are quite large (14% of the
CLBs on one of the FPGAs), 32-bit-floating-point
multipliers are smaller (7%), and most other operations
necessary to the solver are very small (<1%). The
CLBs necessary to access different RAM addresses can
also grow to a significant size, given larger-sized or
denser matrices. (Given the small nature of the
matrices tested on this solver, RAM did not take up a
significant amount of FPGA space. However, when the

solver is tested on a larger scale, RAM accessing may
become a consideration).
 There also are differences in the amount of time a
given operation on an FPGA takes to complete. Many
operations, such as bit inversion, logical gates, and
Muxes are asynchronous (effectively “instantaneous;”
they require much less than one clock cycle), and some
control or memory processes such as accessing or
storing RAM are synchronous, with one nominal clock
cycle. An addition requires only one cycle, while a
multiplication requires around 25.
 Programming strategies must take these differences
into account. Each iteration requires about as many
multiplications as it does additions, but since a
multiplication takes much longer than an addition, and
adders take up more space on the chip than multipliers,
it makes sense to create more multipliers than adders in
execution of the algorithm. One adder can effectively
service almost 25 times as many dot product processes
simultaneously as can one multiplier. For this reason,
the number of multipliers is the determining factor for
the actual degree of parallelization in the solver, and it
is advantageous to create extra multipliers that share
fewer adders. The following parallelization scheme for
factories, though not completely implemented and
tested in a working matrix equation solver, was
programmed. This scheme, when implemented, will
greatly increase solution speed by increasing the
number of multipliers that operate concurrently.

2.4.1 NRows and NRows1*:
An object, called “NRows,” stores N sparse vectors of
row data, and what may be thought of as a “pointer.”
These vectors are accessed one at a time. Inputs into
NRows are only received by the row that the pointer
points to, and outputs from NRows also come from this
row. When the “First_Row” input initializes NRows,
the pointer points to the first row. When the program
finishes with each row vector, another input,
“Next_Row” advances the pointer. When the pointer
reaches the end of the list, it ceases pointing to any of
the rows.

Another object, called “NRows1*,” consists of an
NRows object, one multiply object (the asterisk
represents multiplication), and a few other functions,
including a copy of the solution vector. This object
evaluates the (modified) dot product for one row at a
time. NRows1* contains both the control structures for
the dot product and the multiplier necessary to compute
it. The control structure selects each nonzero element
in the row data one by one, matches it with the
appropriate coefficient in the solution vector, and sends
it to the multiplier to be multiplied. The result of the
multiplication is then sent to the adder along with the
current accumulated dot product. Most of these
components can be seen in Figure 5, the graphical code

 5

for NRows1*. The rest are included in the Rowdot
function, expanded and displayed Figure 6.

The adder, however, is not included in an NRows1*
object. This is because one adder is shared among
several NRows1* objects. Therefore, the adder must
remain an outside resource for NRows1* to access only
when required, and when another NRows1* object is
not using it simultaneously.

2.4.2 M(NRows1*) and M(NRows1*)1+:
The M(NRows1*) object contains a group of M
NRows1* objects, which work simultaneously, sharing
an adder. The M(NRows1*)1+ object consists of an
M(NRows1*) object and one “TDM_Add” object.
TDM_Add is an addition object that both performs
addition and mediates between the multipliers
requesting the adder’s resources. TDM_Add is
explained more completely in section 2.5.

2.4.3 Recursion for Flexibility:
One important feature of an FPGA program is the
user’s freedom to choose the parameters that will affect
its operation. In this solver, a number of parameters are
passed out to the top level to give the user options
concerning parallelism, including two in particular:
(MSB)M, and (MSB)N, which define respectively the
number of multipliers sharing each adder, and the
number of rows sharing each multiplier. The value
obtained from each of these variables is the bit length of
its type, not the actual data it holds. They must be
defined before compile time because they affect the
actual creation of the factory part of the iterator on the
chip. The way this recursion works (which is the clever
standard mode of recursion in Viva® developed by
Samuel Brown), is that a function is created with
different definitions according to the data types of its
input. The end leaf of recursion is the function
definition where the recursion input is a bit, and the
programmer strips one bit off the data type at each non-
end-leaf level of recursion. In this way, the number of
bits in the recursion input is the number of recursion
levels. $M(NRows1*) (the lower-level function inside
M(NRows1*) that actually implements the recursion)
uses this recursion method and is shown in Figure 7.
(MSB)M is the recursion variable.

2.5 Control Structures:
Since Viva® programming is inherently parallel, and
functions do not necessarily progress in any particular
order, the Viva® programmer must make use of Viva®
control structures in order to synchronize operation. In
other words, all operations automatically execute in
parallel; any sequential operation must be explicitly
programmed and defined precisely. Since most
algorithms require a combination of sequential and
parallel operations, and since the best Viva® programs

reuse many of their operators, control structures often
are more complex than a simple one-by-one
progression from function to function. These control
structures afford users great power in defining how
programs work, and thus can achieve large speedups
from parallelism. However, they can become complex
and more difficult than any other parts of programs.
 The most basic control structure available in Viva®
is Go-Done circuitry. Synchronous objects read in their
input and begin operation as soon as they receive a Go
“pulse” (a bit which goes to one for a single clock
cycle, then returns to zero). When finished with
operation, they output a Done pulse to indicate the fact.
 For loops are another easy-to-use control structure
built into the Viva® language, and are similar to for
loops in text based languages in their purposes, though
their functionality is adapted to the different type of
programming; they are objects, with input pulses and
output pulses. Inputs include Next (indicates to For
object that an iteration is complete) and Go (initiates
first iteration), while outputs include i (the looping
index), Pulse (sets in motion the next iteration after a
Next is received), and Done (indicates all iterations are
complete).
 Other control structures needed to be more complex.
Programming of control structures turned out to be the
single most challenging part of creating the iterator. It
would take up too much space to explain the workings
of every control machine created for the iterator, but
brief outlines of what the more important structures do
are necessary in an explanation of the overall program,
and therefore are provided.
 The previously discussed hub, a function called
Update/Copy, is the control structure which drives the
highest level of timing, the alternation between copy
and dot product stages. In the copy stage, the current
solution vector guess, stored in the hub, is broadcast to
all the factories, along with a signal letting the factories
know what stage is currently “on.” During the dot
product stage, the hub signals the factories to begin
computation, awaits reports from each row that a dot
product has been completed, and keeps track of which
rows have and have not reported. A string of bits as
long as the number of rows is required to keep track of
this; as a row reports, its associated bit goes from zero
to one. When the bit string is full of all ones, the dot
product stage is ended.
 Recursive structures that are accessed one by one
also require recursive control structures that maintain a
“pointer” to whichever level of recursion is currently
being accessed. This functionality usually consists
mostly of a register that stores one bit on each level of
recursion, signaling if each level is “on” or “off.”
Beginning with the bottom level, as each level of
recursion is used, that level is turned off. In the
meantime, signals are passed down through the “on”

 6

levels until they come to a level under which is an “off”
level. In this way, only the bottommost “on” level
receives and sends data, while the others are bypassed.
In Figure 7, the variable “Pass2Me” is the level’s on/off
switch.
 Yet another important control necessity arises from
shared adders and a shared hub. Though multipliers are
shared, it is not difficult to control their use, as only one
row will ever use that multiplier at any one time.
Adders, on the other hand, may receive several different
sets of data from several different multipliers
simultaneously. Since an adder can only perform one
addition at a time, control structures must be present to
store the other sets of data while the adder adds one set,
and to send another waiting step as soon as the adder is
finished. The TDM_Add (TDM stands for Time
Division Multiplexing) object performs both of these
functions, containing control structures and an adder to
handle simultaneous input from numerous different
multipliers. The Hold object performs these same
functions, except for the fact that instead of managing
several multipliers sharing one adder, it manages
several factories, all with inputs to one hub.

2.6 Input:
Before iteration actually starts, there are some
operations that must be done to prepare the raw matrix
data – see the explanation of the algorithm in section
1.3 for a description of these initial data processing
operations. For the purpose of not wasting FPGA space
on functions that are only performed once, at the
beginning of execution, these preparatory steps are left
outside of the iterative solver. When file input is
implemented, a program to perform these preparatory
steps should be created for the CPU, to get the data into
the form it must take for the FPGA solver.

Inputs were sometimes read from the screen to test
component functions and the 3x3 iterator, which did not
require a large volume of input. However, for larger
matrices, screen input would certainly be far too tedious
and lengthy, and automatically loaded file input would
be preferred. Automatic loading procedures were
developed for input that was defined in the actual code,
but as the solver is still at a level of small test cases, it
has not yet been necessary to create file input
procedures. Such procedures should be somewhat
complicated to create, but not prohibitively complicated
since Viva® does contain viable File input/output
procedures. Future extensions of this solver will
undoubtedly require automated file loading procedures.

Such automatic loading procedures are complicated
by the fact that the Viva® objects that reference the
RAM are removed by several steps from the top level.
File data input into a factory must be routed to the
correct M(NRows1*)1+ object. Once passed into that
M(NRows1*), it must be routed to the correct

NRows1* object, where it must then be routed to the
correct Row in NRows. Each of these routing steps
requires a large number of registers, Muxes, Demuxes,
and other cooperative control structures to keep track of
where every piece of incoming data should be stored.
The file input all enters the program at the same place,
and rather than directly sending it to somewhere in the
program to be stored, the program itself must simply go
through all its rows one by one in an orderly fashion,
opening and then closing each to incoming data. A
different scheme for loading, storing and accessing data
might be advantageous in future versions of the
equation solver if it allowed for more simplicity of data
loading and accessing.
 With an automatically loading iterator, the user will
need to make several inputs before compiling, including
(MSB)M and (MSB)N. Other variables that must be
defined at compile time are DType (data type), which
tells Viva® what type of specialized multipliers,
adders, registers, and other functions to build for data
processing; iType (index type), which tells Viva® what
type (must be an MSB type) to use to represent indices
and row numbers; and NBits, the bit length of which
must be at least the total number of rows in the matrix.
Some constants, such as the size of the matrix, also
must be defined either before or after compilation.
Finally, the user must choose the number of factories,
and each factory individually created and connected.
This is a weakness that should be redressed in future
matrix equation solvers.
 An ideally user-friendly solver should only take a
few inputs defining the amount of parallelism, a file
name containing data, and a single signal to set the
iterations in motion.

3. Results:
At this stage, the iterative solver has had successful
initial results. A 3x3 application of the iterator has
been tested successfully. Large versions with hundreds
or thousands of equations and variables are at this point
not possible, due to limitations of current hardware and
code and incomplete loading procedures.

3.1 Small-Scale Success:
The aforementioned test of the solver on the following
3x3 matrix equation:
 _ _ _ _
1.0 0.5 0.25		2.75
0.5 1.0 0.125	{x} =	2.875
_ 0.25 0.125 1.0 _		_3.5 _

was successful. This test correctly found the solution
x1 = 1, x2 = 2, x3 = 3 to a high degree of precision.

 7

A few troublesome idiosyncrasies emerged from the
results, however. After converging to within one
millionth from the exact solution, if the iterator
continued iterating, it would briefly stray from the
correct solution, as much as a hundredth off the exact
answer. Another finding was that, viewing the results
after each iteration, during millions of clock cycles per
second, an occasional aberration would appear that was
far away from the correct answer, (e.g. 4.7*1037). It is
unknown what caused these errors, but round-off error
is not likely to be the culprit; the numbers were stored
as 32-bit float numbers, so round-off error should be
very small. Small errors do not have a chance to
compound in an iterative method as they do in direct
methods, because though error might offset the current
guess at the solution vector by a small amount, the
vector automatically converges back toward the correct
answer, nullifying the error. Therefore, it is more likely
that something sporadically goes awry within a
multiplier or adder, or that a small error in the solver’s
programmed control structures manifests itself
infrequently.

3.2 Large-Scale Limitations:
Numerous factors have frustrated attempts to create the
more parallel matrix equation solver described in
section 2.4.1-2.4.3. First and foremost have been
difficulties using Viva® adders and multipliers for
floating-point data types. For unknown reasons, some
functions programmed and tested successfully on the
“byte” data type failed when applied to the “float” data
type. Examples of errors from adders and multipliers
usually took the form of errors such as
1.0+2.0=4.7*1037, which suggest misplacement of bits
resulting from multipliers and adders being confused
about whether they are operating on unsigned integers
or floating-point numbers. In some cases, programmer
error was the cause of these problems, in the form of
misapplication of data type casting rules and procedures
in Viva®. These rules can be complex and were
sometimes confusing to the programmer. For instance,
data in feedback loops must be recast before being fed
back into the functions, and data read in from files must
be cast to its own data type before being used. Data
type management is simply another example of a tool
Viva® programmers possess which increases their
power, but can also confuse.

In other cases, however, casting rules such as the
ones above seemed to have been followed but
nonsensical results still came out of floating-point
adders and multipliers. Such bugs limited the speed of
developing functions and ultimately were the main
obstacle that prevented a solver using the complex
recursion scheme outlined in this paper from ever being
successfully tested.

 Another limitation that affected the successfully
tested but not-as-parallel solver was the number of bits
that could be passed between FPGAs, currently 32 bits.
The implementation of this iterative solver requires 37
bits of communication. The upshot was that only one
FPGA could be used. However, Star Bridge’s latest
FPGA Hypercomputer® allows 128 bits to be passed
between FPGAs. This newer hypercomputer® includes
new Xilinx FPGAs with more space (6 million gates)
on each FPGA and faster (on-chip) floating-point
multiplications.
 In the end, most of the necessary functions, such as
NRows through M(NRows1*)1+, have been
programmed and tested successfully for integer data.
Automated file input, fewer user inputs, and a few
small functions to connect things on the top level still
have yet to be programmed and are planned for the
future to make the solver complete.

4. Conclusions:
FPGA technology, paired with Viva®, shows serious
promise for application to matrix equation solution.
Solving matrix equations was found to be both possible
and feasible given current FPGA technology, and if the
current rate of FPGA and Viva® advancement
continues, it is very likely that FPGAs will achieve
parallelism unequalled in current state-of-the-art CPU-
based computers. This parallelism should yield much
faster solutions for iterative matrix equation solvers and
other applications that can exploit parallelism.

5. Acknowledgements:
First and foremost, I would like to thank Dr. Olaf O.
Storaasli, who has volunteered so much of his time in
the past two years to open up wonderful opportunities
for me. I also would like to thank him for helping to
edit this report. I would also like to acknowledge Dr.
Robert Singleterry and Samuel Brown for teaching me
a great deal about the Viva® language, explaining
various concepts to me, providing me with ideas, and
helping me to debug code. In particular, many of the
recursion and time-division multiplexing ideas used in
the solver are inspired by the clever ways Samuel
Brown has solved other problems. Finally, I would like
to thank NASA Langley Research Center and Star
Bridge Systems for making this work possible.

6. References:
1. Golub, Gene H. and Charles F. Van Loan. 1989.

Matrix Computations, second ed. The Johns
Hopkins University Press, Baltimore.

2. Singleterry, Robert C., Jaroslaw Sobieszczanski-
Sobieski, and Samuel Brown. “Field-
Programmable Gate Array Computer in Structural

 8

Analysis: An Initial Exploration.” 43rd American
Institute of Aeronautics and Astronautics (AIAA)
Structures, Structural Dynamics, and Materials
Conference. April 22-25, 2002.

3. Star Bridge Systems, Inc. 2002. Star Bridge
Systems Web Site.
<http://www.starbridgesystems.com>

 9

Above, Figure 1: Screen shot of Viva® program to compute
 (x1*y1)+(x2*y2)+(x3*y3)+(x4*y4).
Below, Figure 2: Code for Dense RAM vector and Sparse RAM Vector.

 10

Above, Figure 3: Example of five-input Sparse
Below, Figure 4: Complete 3x3 iterator

 11

Above, Figure 5: NRows1*
Below, Figure 6: Rowdot

 12

Above, Figure 7: $M(NRows)

